
Technical Introduction

Sascha Zelzer
Presented by

MBI@DKFZ

CTK Plugin Framework

Today's Topics

1. About OSGi

2. Architecture

3. The CTK Plug-in

4. Programming Basics

5. Dealing with services

About OSGi
•The OSGi Alliance is a non-profit

corporation founded in March 1999.

•More than 35 companies from various
areas

•Roots in embedded systems

•The OSGi specification is at Release 4
with numerous implementations in Java

•Specification for the core framework and
a compendium of service interfaces

Architecture

Architecture – Life Cycle

•A plug-in is started
by the Plugin
Activator class.

•The Activator gets a
Plug-in Context
which represents the
Framework.

•Plug-in Context
objects should not
be shared.

Architecture - Services

•The Framework provides a dynamic service
model for communication between plug-ins

•Active plug-ins may (un)register 0 or more
services with the Framework at any time

•A service registration is a published inter-
face with optional registration properties

•Service references are obtained from the
FW by interface and filter expressions

•The Framework publishes service lifecycle
events

The CTK Plug-in

•A plug-in is a shared library with
additional meta-data and resources

•It must provide a Plugin Activator class
which is called by the Framework

•The FW invokes the start method when
the plug-in enters the ACTIVE state

•The FW invokes the STOP method when
the plug-in leaves the ACTIVE state

The CTK Plug-in
Each plug-in receives a unique
ctkPluginContext for accessing the FW.

class MyActivator : public QObject, public ctkPluginActivator
{
 Q_OBJECT
 Q_INTERFACES(ctkPluginActivator)

public:
 void start(ctkPluginContext* context)
 { myPC = context; }

 void stop(ctkPluginContext* context);

private:
 ctkPluginContext* myPC;
};

Programming Basics

Providing a Service

•Services are registered with the FW
through the Plug-in Context

•(Un)Registration may be done at any time

void registerSomeService() {
 mySomeService = new SomeServiceImpl();
 ctkDictionary props;
 props.insert(“myvalue”, 20);
 mySR = myPC->registerService<SomeService>(someServiceImpl, props);
}

void unregisterSomeService() {
 mySR.unregister();
}

Consuming a Service
•Services are retrieved from the FW

through the Plug-in Context

•The FW returns a ctkServiceReference
object which can be kept for future ref.

•Consumers must unget the service ref.
void consumeSomeService() {
 ctkServiceReference sr = myPC->getServiceReference<SomeService>();
 if (sr) {
 SomeService* si = myPC->getService<SomeService>(sr);
 if (si) {
 // …
 myPC->ungetService(sr);
 }
 }
}

Using Service Listeners
•Service listeners can be (un)registered

•A filter can be specified

class A : public QObject {
 Q_OBJECT

slots:
 void someServiceListener(const ctkServiceEvent& event) { … }

public:
 void registerServiceListener() {
 myPC->connectServiceListener(this, “someServiceListener”, “filterExpr”);
 }

private:
 ctkPluginContext* myPC;
};

Using ctkServiceFactory
•Allows customized service instances

•The Framework caches service instances

struct MyServiceFactory : public ctkServiceFactory {

 QObject* getService(QSharedPointer<ctkPlugin> plugin,
 ctkServiceRegistration reg) {
 return new SomeServiceImpl(plugin->getSymbolicName()); }

 void ungetService(QSharedPointer<ctkPlugin> plugin,
 ctkServiceRegistration reg, QObject* service) {
 delete service; }
};

void A::registerServiceFactory() {
 myServiceFactory = new MyServiceFactory();
 myPC->registerService<SomeService>(myServiceFactory);
}

Using ctkServiceTracker
•Convenience class making life easier

•The tracker holds all currently available
services

class B {

private:
 ctkServiceTracker<SomeService*> myServiceTracker;

public:
 B(ctkPluginContext* context)
 : myServiceTracker(context) { }

 void useSomeService() {
 SomeService* ss = myServiceTracker.getService();
 if (ss) { … }
 }
};

Using Filters
•Service lookups and events can be

constrained by the use of filters

•Filters are defined in LDAP query syntax

try {
 QList<ctkServiceReference> refs =
 myPC->getServiceReferences<SomeService>
 (“(&(myvalue>10)(myvalue<30))”);
 foreach(ctkServiceReference sr, refs) {
 …
 }
}
catch(const std::invalid_argument& e) {
 // filter expression cannot be parsed
}

Questions?

